Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
1.
Acta Pharmacol Sin ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719955

RESUMO

Pulmonary hypertension (PH) is a progressive fatal disease with no cure. Canagliflozin (CANA), a novel medication for diabetes, has been found to have remarkable cardiovascular benefits. However, few studies have addressed the effect and pharmacological mechanism of CANA in the treatment of PH. Therefore, our study aimed to investigate the effect and pharmacological mechanism of CANA in treating PH. First, CANA suppressed increased pulmonary artery pressure, right ventricular hypertrophy, and vascular remodeling in both mouse and rat PH models. Network pharmacology, transcriptomics, and biological results suggested that CANA could ameliorate PH by suppressing excessive oxidative stress and pulmonary artery smooth muscle cell proliferation partially through the activation of PPARγ. Further studies demonstrated that CANA inhibited phosphorylation of PPARγ at Ser225 (a novel serine phosphorylation site in PPARγ), thereby promoting the nuclear translocation of PPARγ and increasing its ability to resist oxidative stress and proliferation. Taken together, our study not only highlighted the potential pharmacological effect of CANA on PH but also revealed that CANA-induced inhibition of PPARγ Ser225 phosphorylation increases its capacity to counteract oxidative stress and inhibits proliferation. These findings may stimulate further research and encourage future clinical trials exploring the therapeutic potential of CANA in PH treatment.

2.
Inflammation ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38653921

RESUMO

Aging is a physiological condition accomplished with persistent low-grade inflammation and metabolic disorders. FGF21 has been reported to act as a potent longevity determinant, involving inflammatory response and energy metabolism. In this study, we engineered aging FGF21 knockout mice of 36-40 weeks and observed that FGF21 deficiency manifests a spontaneous inflammatory response of lung and abnormal accumulation of lipids in liver. On one hand, inflamed state in lungs and increased circulating inflammatory cytokines were found in FGF21 knockout mice of 36-40 weeks. To evaluate the ability of FGF21 to suppress inflammation, a subsequent study found that FGF21 knockout aggravated LPS-induced pulmonary exudation and inflammatory infiltration in mice, while exogenous administration of FGF21 reversed these malignant phenotypes by enhancing microvascular endothelial junction. On the other hand, FGF21 knockout induces fatty liver in aging mice, characterized by excessive accumulation of triglycerides within hepatocytes. Further quantitative metabolomics and lipidomics analysis revealed perturbed metabolic profile in liver lacking FGF21, including disrupted glucose and lipids metabolism, glycerophospholipid metabolism, and amino acid metabolism. Taken together, this investigation reveals the protective role of FGF21 during aging by weakening the inflammatory response and balancing energy metabolism.

3.
Dalton Trans ; 53(13): 6063-6069, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38477327

RESUMO

A new layered metal sulfide, namely (C6H15N3)1.3(NH4)1.5H1.5In3SnS8 (1, C6H15N3 = N-(2-aminoethyl) piperazine), has been solvothermally synthesized and characterized. Compound 1 crystallizes in the monoclinic space group C2/c. Its structure features a two-dimensional layer of {In3SnS8}n3n- with the (4,4) topology net, which is formed by interlinking supertetrahedral T2 clusters as secondary building units. Band structure calculations revealed that 1 had a band gap of 2.7 eV. The photoelectric response of 1 showed steady and reversible on/off cycles with an "on" state of 121.13 nA cm-2. Moreover, the activation of 1 by replacing the sluggish organic cations with harder K+ ions endowed the material with improved adsorption performances for Sr2+ ions from aqueous solutions.

4.
Dalton Trans ; 53(9): 4342, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38353276

RESUMO

Correction for 'The {Cu2I2} cluster bearing metal organic frameworks: crystal structures and fluorescence detecting performances towards cysteine and explosive molecules' by Jiang Jiang et al., Dalton Trans., 2024, 53, 706-714, https://doi.org/10.1039/d3dt03363e.

5.
Front Optoelectron ; 17(1): 6, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38374460

RESUMO

With the rapid development of white LEDs, the research of new and efficient white light emitting materials has attracted increasing attention. Zero dimensional (0D) organic-inorganic hybrid metal halide perovskites with superior luminescent property are promising candidates for LED application, due to their abundant and tailorable structure. Herein, [(CH3)3S]2SnCl6·H2O is synthesized as a host for dopant ions Bi3+ and Sb3+. The Sb3+ doped, or Bi3+/Sb3+ co-doped, [(CH3)3S]2SnCl6·H2O has a tunable optical emission spectrum by means of varying dopant ratio and excitation wavelength. As a result, we can achieve single-phase materials suitable for emission ranging from cold white light to warm white light. The intrinsic mechanism is examined in this work, to clarify the dopant effect on the optical properties. The high stability of title crystalline material, against water, oxygen and heat, makes it promising for further application.

6.
Nat Commun ; 15(1): 195, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172123

RESUMO

Soft robots capable of efficiently implementing tasks in fluid-immersed environments hold great promise for diverse applications. However, it remains challenging to achieve robotization that relies on dynamic underwater adhesion and morphing capability. Here we propose the construction of such robots with designer protein materials. Firstly, a resilin-like protein is complexed with polyoxometalate anions to form hydrogels that can rapidly switch between soft adhesive and stiff non-adhesive states in aqueous environments in response to small temperature variation. To realize remote control over dynamic adhesion and morphing, Fe3O4 nanoparticles are then integrated into the hydrogels to form soft robots with photothermal and magnetic responsiveness. These robots are demonstrated to undertake complex tasks including repairing artificial blood vessel, capturing and delivering multiple cargoes in water under cooperative control of infrared light and magnetic field. These findings pave an avenue for the creation of protein-based underwater robots with on-demand functionalities.


Assuntos
Substitutos Sanguíneos , Robótica , Humanos , Fenômenos Físicos , Hidrogéis , Raios Infravermelhos , Aderências Teciduais , Água
7.
Dalton Trans ; 53(5): 2318-2323, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38205611

RESUMO

Three new group IIIA metal phosphate-oxalate (MPO) compounds, namely [(CH3)2NH2]2[M2(HPO4)2(H2PO4)2(C2O4)] (M = Al (1), Ga (2)) and [(CH3)2NH2]2[In2(HPO4)2(H2PO4)2(C2O4)]·H2O (3), have been synthesized. Their crystal structures feature an anionic layer with the sql topology net. In particular, 1 displays a proton conductivity (σ) of 9.09 × 10-3 S cm-1 at 85 °C and under 98% relative humidity, which is the highest among MPOs. This study not only endows the main group metal-based MPO family with new members, but also contributes to further understanding of the structure-directing roles of amines and provides a feasible idea for improving the proton conductivity of MPOs.

8.
Dalton Trans ; 53(2): 706-714, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38084056

RESUMO

Two {Cu2I2} cluster-bearing metal organic frameworks (MOFs) of {[Eu(CuI)2(INA)3DMF]·0.95DMF}n (Eu-CuI-INA) and {K[(CH3)2NH2]Sr4(INA)2(DMF)2{(Cu2I2)2(INA)8}·2H2O}n (Sr-K-CuI-INA, HINA = isonicotinic acid, DMF = N,N-dimethyl formamide) were prepared and characterized in this work. Both materials feature a three-dimensional (3-D) structure, in which the {Cu2I2} clusters and Eu3+ (or Sr2+) metal ions are coordinated by INA- ligands with pyridine and carboxylic groups, respectively. Impressively, Sr-K-CuI-INA exhibits sensitive fluorescence sensing behaviors towards cysteine and nitro-bearing molecules, demonstrating potential FL sensing applications for bio and explosive molecules. This work would provide a good reference for designing fluorescent MOF probes containing CuI molecules.

9.
Dalton Trans ; 53(3): 1156-1162, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38105701

RESUMO

Two isostructural Co(Cd)-antimony-oxo tartrate cluster-based compounds with a one-dimensional (1-D) belt-like structure, namely H9.2[Co(H2O)6]{M0.5(H2O)3.5{M'(H2O)4[SbVO6[Co4.2(H2O)5SbIII6(µ3-O)2(tta)6]]}}2·nH2O (M = Co, M' = Co, n = 9 (1); M = Cd0.39/Co0.61, M' = Cd0.24/Co0.76, n = 7 (2); H4tta = tartaric acid), have been synthesized by solvothermal methods. It is noteworthy that the relatively rare mixed-valence Sb(III,V) exists in the structures. The anionic clusters in both compounds appear to be in a sandwich configuration; the top and bottom layers are based on {Sb3(µ3-O)(tta)3} brackets, and the intermediate layer is occupied by {SbVO6[Co4.2(H2O)5]}. The title compounds have been characterized by single-crystal X-ray diffraction, powder X-ray diffraction, elemental analyses, thermogravimetric analyses, and UV-Vis spectroscopy. We chose compound 2 as a representative to test its proton conductivity, and the results show that the conductivity can reach 1.42 × 10-3 S cm-1 at 85 °C under 98% relative humidity.

10.
Sensors (Basel) ; 23(24)2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38139565

RESUMO

In the past decades, porous coordination polymers (PCPs) based fluorescent (FL) sensors have received intense attention due to their promising applications. In this work, a soluble Zn-PCP is presented as a sensitive probe towards explosive molecules, chromate, and dichromate ions. In former reports, PCP sensors were usually ground into fine powders and then dispersed in solvents to form FL emulsion for sensing applications. However, their insoluble characters would cause the sensing accuracy which is prone to interference from environmental effects. While in this work, the as-made PCP could be directly soluble in organic solvents to form a clear solution with bright blue emission, representing the first soluble PCP based fluorescence sensor to probe explosive molecules under a homogeneous environment. Moreover, the FL PCP solution also shows sensitive detection behaviors towards the toxic anions of CrO42- and Cr2O72-, which exhibit a good linear relationship between the fluorescence intensity of Zn-PCP and the concentrations of both analytes. This work provides a reference for designing task-specific PCP sensors utilized under a homogeneous environment.

11.
Inorg Chem ; 62(45): 18331-18337, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37910803

RESUMO

Here, two isomeric ionic zero-dimensional indium bromide crystals of α (1)/ß (2)-[OPy][InBr4(Phen)] (OPy = N-octylpyridinium; Phen = 1,10-phenanthroline) have been isolated simply by changing the cooling conditions in solvothermal syntheses. Structural comparisons indicate their different supramolecular interactions, which can be confirmed by Hirshfeld surface analyses. The crystal 2 has additional hydrogen bonds and π-π interactions; as a result, the more compact stacking of 2 could result in a 10-fold higher photoluminescence (PL) quantum yield (PLQY) than that of 1. Density functional theory calculations confirm the electron transition from the inorganic moiety to the organic ligand, which provides a further understanding of the optical process. This work provides a new idea for designing PL indium-based halides by understanding the structure-PL relationship.

12.
Chem Sci ; 14(35): 9533-9542, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37712033

RESUMO

In this study, we identify a novel class of second-order nonlinear optical (NLO) crystals, non-π-conjugated piperazine (H10C4N2, PIP) metal halides, represented by two centimeter-sized, noncentrosymmetric organic-inorganic metal halides (OIMHs), namely H12C4N2CdI4 (P212121) and H11C4N2CdI3 (Cc). H12C4N2CdI4 is the first to be prepared, and its structure contains a CdI4 tetrahedron, which led to a poor NLO performance, including a weak and non-phase-matchable second harmonic generation (SHG) response of 0.5 × KH2PO4 (KDP), a small birefringence of 0.047 @1064 nm and a narrow bandgap of 3.86 eV. Moreover, H12C4N2CdI4 is regarded as the model compound, and we further obtain H11C4N2CdI3via the replacement of CdI4 with a highly polarizable CdNI3 tetrahedron, which results in a sharp enhancement of SHG response and birefringence. H11C4N2CdI3 exhibits a promising NLO performance including 6 × KDP, 4.10 eV, Δn = 0.074 @1064 nm and phase matchability, indicating that it is the first OIMH to simultaneously exhibit strong SHG response (>5 × KDP) and a wide bandgap (>4.0 eV). Our work presents a novel direction for designing high-performance NLO crystals based on organic-inorganic halides and provides important insights into the role of the hybridized tetrahedron in enhancing the SHG response and birefringence.

13.
J Am Chem Soc ; 145(35): 19293-19302, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37616202

RESUMO

Herein, we present a new series of CuI-based hybrid materials with tunable structures and semiconducting properties. The CuI inorganic modules can be tailored into a one-dimensional (1D) chain and two-dimensional (2D) layer and confined/stabilized in coordination frameworks of potassium isonicotinic acid (HINA) and its derivatives (HINA-R, R = OH, NO2, and COOH). The resulting CuI-based hybrid materials exhibit interesting semiconducting behaviors associated with the dimensionality of the inorganic module; for instance, the structures containing the 2D-CuI module demonstrate significantly enhanced photoconductivity with a maximum increase of five orders of magnitude compared to that of the structures containing the 1D-CuI module. They also represent the first CuI-bearing hybrid chemiresistive gas sensors for NO2 with boosted sensing performance and sensitivity at multiple orders of magnitude over that of the pristine CuI. Particularly, the sensing ability of CuI-K-INA containing both 1D- and 2D-CuI modules is comparable to those of the best NO2 chemiresistors reported thus far.

14.
Front Neurol ; 14: 1119160, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37265472

RESUMO

Introduction: Acute ischemic stroke (AIS) and lung adenocarcinoma (LUAD) are associated with some of the highest morbidity and mortality rates worldwide. Despite reports on their strong correlation, the causal relationship is not fully understood. The study aimed to identify and annotate the biological functions of hub genes with clinical diagnostic efficacy in AIS and LUAD. Methods: Transcriptome and single-cell datasets were obtained from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA). We identified the differentially expressed genes (DEGs) upregulated in AIS and LUAD and found 372 genes intersecting both datasets. Hub genes were identified using protein-protein interaction (PPI) networks, and the diagnostic and prognostic utility of these hub genes was then investigated using receiver operating characteristic (ROC) curves, survival analysis, and univariable Cox proportional hazard regression. Single-cell analysis was used to detect whether the hub genes were expressed in tumor epithelial cells. The immune microenvironment of AIS and LUAD was assessed using the CIBERSORT algorithm. The protein expression of these hub genes was tracked using the Human Protein Atlas (HPA). We calculated the number of positive cells using the digital pathology software QuPath. Finally, we performed molecular docking after using the Enrichr database to predict possible medicines. Results: We identified the molecular mechanisms underlying hub genes in AIS and LUAD and found that CCNA2, CCNB1, CDKN2A, and CDK1 were highly expressed in AIS and LUAD tissue samples compared to controls. The hub genes were mainly involved in the following pathways: the cell cycle, cellular senescence, and the HIF-1 signaling pathway. Using immunohistochemical slices from the HPA database, we confirmed that these hub genes have a high diagnostic capability for AIS and LUAD. Further, their high expression is associated with poor prognosis. Finally, curcumin was tested as a potential medication using molecular docking modeling. Discussion: Our findings suggest that the hub genes we found in this study contribute to the development and progression of AIS and LUAD by altering the cellular senescence pathway. Thus, they may be promising markers for diagnosis and prognosis.

15.
World J Clin Cases ; 11(14): 3323-3329, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37274033

RESUMO

BACKGROUND: Left ventricular thrombus is a rare condition, for which appropriate treatments are not extensively studied. Although it can be treated by thrombectomy, such surgery can be difficult and risky, and not every patient can tolerate the surgery. CASE SUMMARY: We report a case of a middle-aged man receiving veno-arterial extracorporeal membrane oxygenation (VA-ECMO) for acute myocardial infarction who developed left ventricular thrombus despite systemic anticoagulation. After systemic thrombolysis with urokinase, the left ventricular thrombus disappeared, ECMO was successfully withdrawn 9 days later, and the patient recovered and was discharged from hospital. CONCLUSION: Systemic thrombolysis is a treatment option for left ventricular thrombus in addition to anticoagulation and thrombectomy.

16.
Small ; 19(43): e2300534, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37357154

RESUMO

Constructing heterogeneous nanostructures is an efficient strategy to improve the electrical and ionic conductivity of metal chalcogenide-based anodes. Herein, ZnS/SnO2 quantum dots (QDs) as p-n heterojunctions that are uniformly anchored to reduced graphene oxides (ZnS-SnO2 @rGO) are designed and engineered. Combining the merits of fast electron transport via the internal electric field and a greatly shortened Li/Na ion diffusion pathway in the ZnS/SnO2 QDs (3-5 nm), along with the excellent electrical conductivity and good structural stability provided by the rGO matrix, the ZnS-SnO2 @rGO anode exhibits enhanced electronic and ionic conductivity, which can be proved by both experiments and theoretical calculations. Consequently, the ZnS-SnO2 @rGO anode shows a significantly improved rate performance that simple counterpart composite anodes cannot achieve. Specifically, high reversible specific capacities are achieved for both lithium-ion battery (551 mA h g-1 at 5.0 A g-1 , 670 mA h g-1 at 3.0 A g-1 after 1400 cycles) and sodium-ion battery (334 mA h g-1 at 5.0 A g-1 , 313 mA h g-1 at 1.0 A g-1 after 400 cycles). Thus, this strategy to build semiconductor metal sulfides/metal oxide heterostructures at the atomic scale may inspire the rational design of metal compounds for high-performance battery applications.

17.
Acta Pharmacol Sin ; 44(10): 2004-2018, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37225844

RESUMO

Doxorubicin is a common chemotherapeutic agent in clinic, but myocardial toxicity limits its use. Fibroblast growth factor (FGF) 10, a multifunctional paracrine growth factor, plays diverse roles in embryonic and postnatal heart development as well as in cardiac regeneration and repair. In this study we investigated the role of FGF10 as a potential modulator of doxorubicin-induced cardiac cytotoxicity and the underlying molecular mechanisms. Fgf10+/- mice and an inducible dominant negative FGFR2b transgenic mouse model (Rosa26rtTA; tet(O)sFgfr2b) were used to determine the effect of Fgf10 hypomorph or blocking of endogenous FGFR2b ligands activity on doxorubicin-induced myocardial injury. Acute myocardial injury was induced by a single injection of doxorubicin (25 mg/kg, i.p.). Then cardiac function was evaluated using echocardiography, and DNA damage, oxidative stress and apoptosis in cardiac tissue were assessed. We showed that doxorubicin treatment markedly decreased the expression of FGFR2b ligands including FGF10 in cardiac tissue of wild type mice, whereas Fgf10+/- mice exhibited a greater degree of oxidative stress, DNA damage and apoptosis as compared with the Fgf10+/+ control. Pre-treatment with recombinant FGF10 protein significantly attenuated doxorubicin-induced oxidative stress, DNA damage and apoptosis both in doxorubicin-treated mice and in doxorubicin-treated HL-1 cells and NRCMs. We demonstrated that FGF10 protected against doxorubicin-induced myocardial toxicity via activation of FGFR2/Pleckstrin homology-like domain family A member 1 (PHLDA1)/Akt axis. Overall, our results unveil a potent protective effect of FGF10 against doxorubicin-induced myocardial injury and identify FGFR2b/PHLDA1/Akt axis as a potential therapeutic target for patients receiving doxorubicin treatment.


Assuntos
Fator 10 de Crescimento de Fibroblastos , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos , Animais , Camundongos , Doxorrubicina , Fator 10 de Crescimento de Fibroblastos/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição
18.
Can Respir J ; 2023: 5642040, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36960314

RESUMO

Aim: To investigate the association between serum bilirubin and disease severity in patients with pneumoconiosis. Methods: The study comprised 45 patients with pneumoconiosis retrospectively; all pneumoconiosis patients were classified into I, II, and III stage according to the radiological severity. Results: Serum direct bilirubin levels were significantly lower in III stage pneumoconiosis patients than those in I/II stage (p = 0.012) but not serum indirect bilirubin. Serum direct bilirubin was negatively correlated with radiological severity in patients with pneumoconiosis (r = -0.320; p = 0.032); by multiple linear-regression analysis, we observed that serum direct bilirubin levels had independent association with radiological severity in patients with pneumoconiosis (beta = -0.459; p = 0.005). Conclusions: Serum direct bilirubin levels are negatively associated with disease severity in patients with pneumoconiosis.


Assuntos
Pneumoconiose , Humanos , Estudos Retrospectivos , Pneumoconiose/diagnóstico por imagem , Gravidade do Paciente , Índice de Gravidade de Doença , Bilirrubina
19.
Molecules ; 28(6)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36985695

RESUMO

Unveiling the structural evolution of single-crystalline compounds based on certain building units may help greatly in guiding the design of complex structures. Herein, a series of praseodymium antimony oxohalide crystals have been isolated under solvothermal conditions via adjusting the solvents used, that is, [HN(CH2CH3)3][FeII(2,2'-bpy)3][Pr4Sb12O18Cl15]·EtOH (1) (2,2'-bpy = 2,2'-bipyridine), [HN(CH2CH3)3][FeII(2,2'-bpy)3]2[Pr4Sb12O18Cl14)2Cl]·N(CH2CH3)3·2H2O (2), and (H3O)[Pr4Sb12O18Cl12.5(TEOA)0.5]·2.5EtOH (3) (TEOA = mono-deprotonated triethanolamine anion). Single-crystal X-ray diffraction analysis revealed that all the three structures feature an anionic zig-zag chain of [Pr4Sb12O18Cl15-x]n as the tertiary building unit (TBU), which is formed by interconnections of praseodymium antimony oxochloride clusters (denoted as {Pr4Sb12}) as secondary building units. Interestingly, different arrangements or linkages of chain-like TBUs result in one-dimensional, two-dimensional layered, and three-dimensional structures of 1, 2, and 3, respectively, thus demonstrating clearly the structural evolution of metal oxohalide crystals. The title compounds have been characterized by elemental analysis, powder X-ray diffraction, thermogravimetric analysis, and UV-Vis spectroscopy, and the photodegradation for methyl blue in an aqueous solution of compound 1 has been preliminarily studied. This work offers a way to deeply understand the assembly process of intricate lanthanide-antimony(III) oxohalide structures at the atomic level.

20.
Molecules ; 28(5)2023 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-36903625

RESUMO

Bismuth-halide-based inorganic-organic hybrid materials (Bi-IOHMs) are desirable in luminescence-related applications due to their advantages such as low toxicity and chemical stability. Herein, two Bi-IOHMs of [Bpy][BiCl4(Phen)] (1, Bpy = N-butylpyridinium, Phen = 1,10-phenanthroline) and [PP14][BiCl4(Phen)]·0.25H2O (2, PP14 = N-butyl-N-methylpiperidinium), containing different ionic liquid cations and same anionic units, have been synthesized and characterized. Single-crystal X-ray diffraction reveals that compounds 1 and 2 crystallize in the monoclinic space group of P21/c and P21, respectively. They both possess zero-dimensional ionic structures and exhibit phosphorescence at room temperature upon excitation of UV light (375 nm for 1, 390 nm for 2), with microsecond lifetime (24.13 µs for 1 and 95.37 µs for 2). Hirshfeld surface analysis has been utilized to visually exhibit the different packing motifs and intermolecular interactions in 1 and 2. The variation in ionic liquids makes compound 2 have a more rigid supramolecular structure than 1, resulting in a significant enhancement in photoluminescence quantum yield (PLQY), that is, 0.68% for 1 and 33.24% for 2. In addition, the ratio of the emission intensities for compounds 1 and 2 shows a correlation with temperature. This work provides new insight into luminescence enhancement and temperature sensing applications involving Bi-IOHMs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...